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DELOCALIZATION INDUCED BY NONLINEARITIES OF ANDERSON LOCALIZED
LINEAR MODES IN A RANDOM MEDIUM

G. Kopidakis et S. Aubry
Laboratoire Léon Brillouin (CEA-CNRS)

It is known for many decades that in some very
particular models, there are exact solutions which
correspond to spatially localized time periodic
vibrations ("breathers"). About a decade ago, it has
been realized that in classical systems which are both
nonlinear and discrete,  such solutions generically
exist, that is no special potential forms are required[1].

In principle, discrete breathers  may exist in any
periodic nonlinear model at any dimension taking
into account the whole complexity of real systems,
and moreover they are robust against model
perturbations.
The existence  of these discrete breathers  is a
consequence of the facts that on one hand the
vibration frequency of an oscillation in a nonlinear
system depends on its amplitude and on the other
hand, the linear phonon spectrum is bounded in
frequency because the system is discrete. Then, when
the frequency and the harmonics of the discrete
breathers are in the phonon gaps, no energy radiation
is possible so that this localized vibration persists
forever as an exact solution[2].
These discrete breather solutions are often linearly
stable, that is the small fluctuations do not grow
exponentially[3]. This result implies physically that in
the presence of moderate fluctuations, for example
the thermal fluctuations at low temperature, their life
time will be much longer that those predicted by
standard models of relaxation. Thus, it is not by
chance that these classical excitations were first
found numerically by molecular dynamics in a series
of model with increasing complexity. It has been
found that they appear spontaneously in some
conditions out of thermodynamical equilibrium, for
example under the effect of a thermal shock.
Otherwise, it is well-known since the pioneering
works of Anderson[4] in the fifties that the linear
modes of a random medium may be spatially
localized. In that case, disorder detunes in some
sense, all the resonances which would exist between
the vibrations which are localized at different spots
of the system, which forbids any  propagation of
vibrational energy over long distance. This theory
was also very successful for explaining the insulating
properties of some random metallic alloys (e.g. Nbx
V1-x) or of semiconductors.
Thus, it seems natural to expect that when both
nonlinearity and disorder are involved in the same
system, the localization effect of vibrational
excitations   will   be   enhanced.   Indeed,   since  the

localized phonons of the linearized system cannot
propagate any energy, the energy of a localized
excitation cannot be dissipated through the system
even if its frequency belongs to the phonon
spectrum, and then it should persist indefinetely.
Actually, the phenomenon is more complex than one
could believe, because nonlinearities play a "double-
game ". On one hand, disorder and nonlinearity may
cooperate for generating discrete breathers which
then are exact well localized solutions. On the other
hand, for other time periodic solutions, disorder and
nonlinearity conflict. Nonlinearity may restore
resonances between sites which are far apart, and
then generate unexpectedly spatially extended modes
which can propagate some flux of energy.
We analysed in detail this effect on a very simple
model which consists into a one dimensional chain
of quartic oscillators coupled by harmonic springs.
For that purpose, we improved and developed
several original and reliable techniques for
calculating very accurately both localized and the
extended modes in large systems (which could
become possibly very complex such as
macromolecules)[5].

Figure: Profile of the initial positions  for an exact time
periodic  and time reversible solution  at different
amplitudes  which is initially a localized linear mode (on
site 44) at zero amplitude for the  hamiltonian
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ω i0;2   is uniformly random in the interval [0.5,1.5]  in a

finite system with 50 sites. Each line corresponds to a
given frequency and amplitude of the initial localized
mode, increasing from lower to upper line.
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With these methods, we can follow continuously the
evolution of a time periodic solution as a function of
its frequency (or amplitude of the initially localized
linear mode) when model nonlinearities are present.
The figure shows an example of such an evolution,
for a solution which is initially a localized linear mode
(on site 44) at amplitude zero. It is first observed as
expected that the frequency of this solution increases
as a function of its amplitude because of
nonlinearities. However, it is clear that extra
oscillations grow at spots which are possibly very far
from the initial excited spot. These new oscillations
start to develop precisely at  the location of linear
localized modes the frequency of which becomes
resonant with those of the solution. Thus for an
infinite system with a dense phonon spectrum, an
infinite number of resonant frequencies are crossed
for any small variation of the amplitude (or
equivalently the frequency). As a result, the initial
solution immediately delocalizes with small peaks at
the corresponding resonant spots. However, while the
solution is still small, the distribution of these spots is
sparse which only allows   a tiny transport of energy
which nevertheless is not zero.  When the amplitude
becomes larger, the amount of energy which can be
propagated by such a solution  increases and
becomes comparable to those of a nonlinear phonon
in a similar but non random system.

We are also able to calculate accurately localized
discrete breathers in the same systems, but with other
methods[6]. Our numerical results agree with a
theorem of Albanèse and Fröhlich[7] proven on a
similar model, which states that there is a
"quasicontinuum" of solutions with frequency in a fat

Cantor set (that is with a finite measure). The gaps in
this Cantor set are the consequences of the
resonances with the linear modes which destroy the
localized character of the solution and must be
avoided. Since there are infinitely many possible
resonances, there are infinitely many gaps but
however the widths of these gaps, decay as an
exponential function of the distance between the
breather to the resonant localized linear mode.
Because of that, the frequency Cantor set is not void
and keeps a finite measure.

These original results open new perspectives for a
better understanding of glasses and other amorphous
materials, which is non phenomenologic. On one
hand, we predict that  nonlinearities even very small
imply that a nonvanishing residual thermal
conductivity persists at low temperature but drops
very fast to zero at zero K. On the other hand, a
substantial part of the vibrational energy of the
system may be spontaneously trapped as localized
discrete breathers for very long times, which become
macroscopic at very low temperature. This effect,
which can be easily checked by molecular dynamics
test, provides an alternative interpretation for the slow
relaxation processes in glasses usually described by
the old phenomenological two-level model of
Anderson. Our interpretation only requires some
nonlinearity in the model, which may be very weak
and thus which should always exist. On contrary, the
Anderson model requires the existence of double
wells which actually has never been confirmed by
direct structural observations (at least in most
materials).
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